柯西不等式常用公式

时间:2023-05-20 04:36:59
最佳答案

柯西不等式公式四个:(a²+b²)(c²+d²)≥(ac+bd)²;√(a²+b²)+√(c²+d²)≥√[(a-c)²+(b-d)²];|α||β|≥|α·β|;(∑ai²)(∑bi²)≥(∑ai·bi)²。

柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式。因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

最常用的应该就是二维形式,我在学习的时候用的就是这个,其他的都不怎么用。

(a的平方+b的平方)乘(c的平方+d的平方的)大于等于(ac+bd)的平方

当前仅当ac=bd时成立。

相关推荐
CopyRight © 2020-2023 考试百科 All rights reserved. 粤ICP备2022079352号 站务邮箱: shanbaike@qq.com